

1

ÇANKAYA UNIVERSITY

MECE 104 INTRODUCTION FLUID POWER

Burkay SARI

Fluid Power Definition **Advantages Power Conversion** Usage **Fluid Power Basics Pressure-Area-Flow Rate** Fluids & Selection Pumps Valves **Actuators Accumulators Tank & Filters**

What is Fluid Power?

Fluid Power is the technical expertise of the generation, control and transmission of Power with the pressurized fluids.

Fluid : A substance which has a definite mass and volume at a specific temperature and pressure.

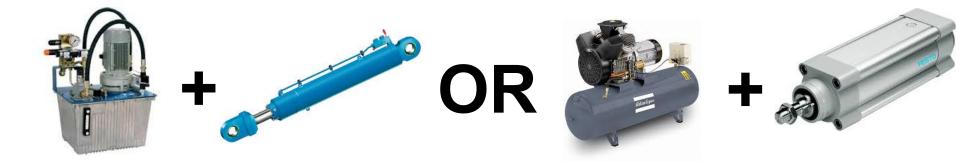
Fluids used in industrial applications are liquids and gases.

Keep in mind !!

Liquids can be considered as incompressible and have the shape of the container.

Gases are compressible fluids, and spread throughout the container.

What is Fluid Power?


Fluid Power can be analysed in two (2) categories

1- HYDRAULICS

(Fluid Power transferred with incompressible fluids such as Oil or Water)

2- PNEUMATIC

(Fluid Power transferred with compressible fluids such as Air or Inert Gases)


Fluid Power

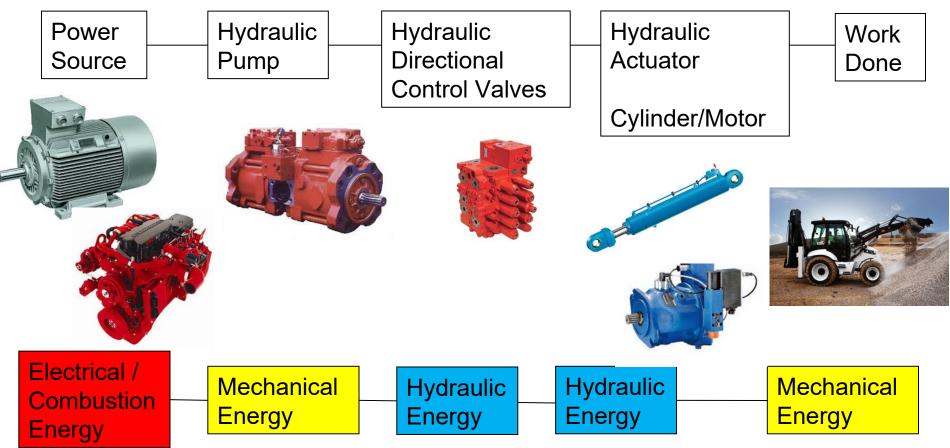
Hydrostatics, deals with the quasi static fluids

Example: Hydraulics can be considered as Hydrostatics

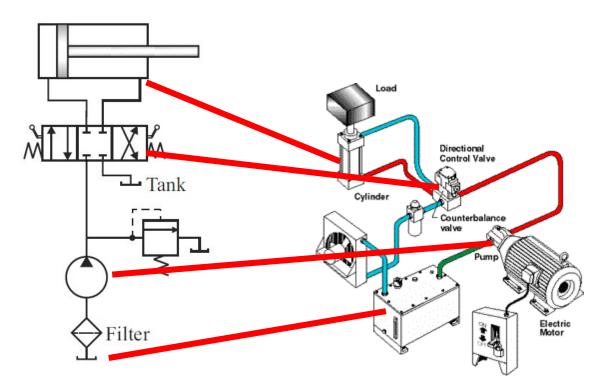
Hydrodynamics, Deals with the moving fluids

Example : Hydroelectrical Power Generation can be an example.

Power Transmission Types


Power Types	Advantages	Disadvantages
Mechanical	- Most Suitable when motion is transferred in short distance	-Limited speed change -System Wear an Maintenance,
Electrical	- Effective power transfer in long distances,	-Sophisticated and expensive systems, -Sensitive to working conditions; i.e. Temperature, dust,
Fluid	-Large power generation in small volumes, -Flexible and easy to apply, -Ease of Power generation and Precise Control,	 Hydraulic fluid behavior, leakage Contamination sensitive, Pneumatics have low force applications

ENERGY CONVERSION FLUID POWER SYSTEMS



BASIC FLUID POWERED SYSTEM

Basic Components

-Energy Source (Motor) -Hydraulic Pump -Hydraulic Tank -Hydraulic Relief Valve -Hydraulic Cylinder -Direction Control Valve

Mobile Applications	Μ	lachinery Application	IS	Factory Automation	Renewable Energies
Agricultural and Forestry Machinery	Architecture in Motion	Machine Tools (forming) and Presses	Rubber Processing	Assembly and Handling	Ocean Energy
Construction Machinery	Cement Industry	Marine	Shipyard Equipment	Automotive	Wind Energy
Material Handling	Chemical Industry	Materials Handling	Stage Technology	Machine Tools (cutting)	
On-Highway and Commercial Vehicles	Civil Engineering	Metallurgy	Sugar Industry	Packaging and Processing	
Aviation Applications	Energy Technology	Mineral Processing	Testing Technology	Printing and Converting	
Marine Applications	Engines	Mining	Transport Technology	Semiconductor and Electronics	
	Glass Making Machinery	Motion Simulation Technology	Tunnel Boring Machines	Solar	
	Horizontal and Utility Drilling	Offshore	Woodworking		
	Hydrodynamic Research	Oil and Gas land based			
		Plastic Machinery and Die Casting			
		Pulp and Paper Machinery			
		Recycling and Waste Handling			

Agricultural and Forestry Machinery

Construction Machinery

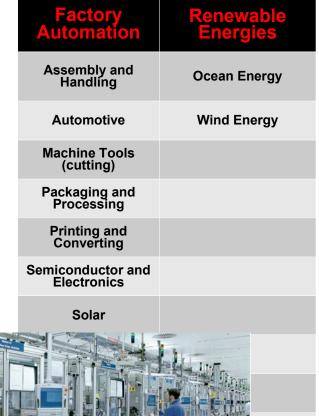
Material Handling

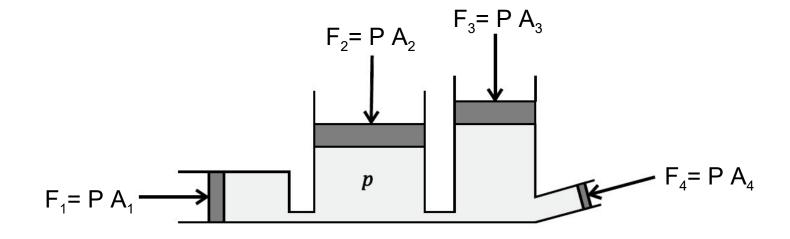
On-Highway and Commercial Vehicles

Aviation Applications

Marine Applications

Machinery Applications								
Architecture in Motion	Machine Tools (forming) and Presses	Rubber Processing						
Cement Industry	Marine	Shipyard Equipment						
Chemical Industry	Materials Handling	Stage Technology						
Civil Engineering	Metallurgy	Sugar Industry						
Dredging	Mineral Processing	Testing Technology						
Energy Technology	Mining	Transport Technology						
Engines	Motion Simulation Technology	Tunnel Boring Machines						
Glass Making Machinery	Offshore	Woodworking						
Horizontal and Utility Drilling	Oil and Gas land based							
Hydrodynamic Research	Plastic Machinery and Die Casting							
	Pulp and Paper Machinery							
	Recycling and Waste Handling							





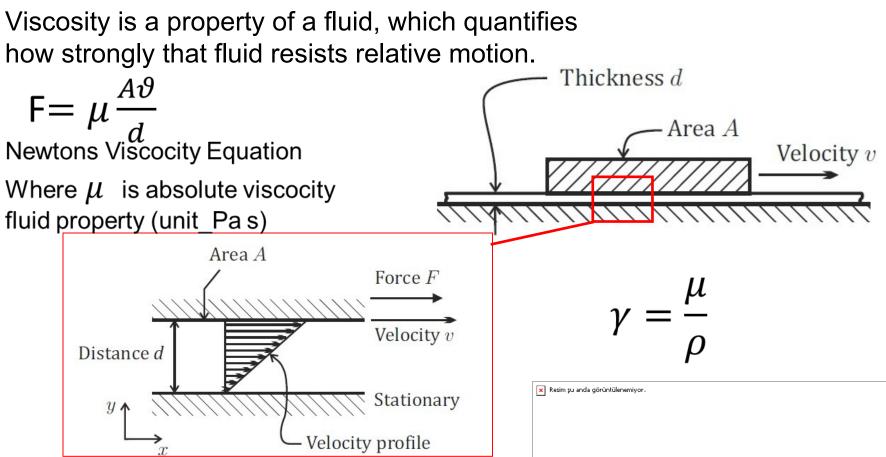
Pascal LAW

Pressure within a fluid at rest acts equally in all directions and at right angles to any surface on which it acts.

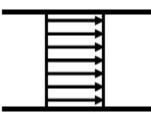
- 1- Conservation of Mass & Energy
- 2- Continuity

Units and Dimensions

Force F= m a	Pressure Pressure is force exerted per unit area in a direction that is normal to and towards the area P= F / A
where, F = in N (Newtons) m = mass in kg (kilograms) a = acceleration (m/s2)	where, $P = Pressure in Pa or (N/m^2)$ F = in N (Newtons) $A = Area (m^2)$
1 N = 1 kg m/ s ² Cylinder Force Calculations F= P* A Where A is the area	Pressure Head (meters) $P = \rho g h$ where, $\rho = density kg/m^3$ $g = gravitational acceleration m/s^2$ h = depth below free surface
p = F/A	


FLUIDS

Viscosity



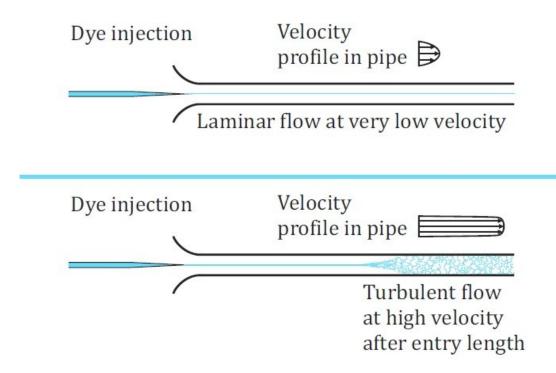
Laminar & Turbulent Flow Definitions

Due to the friction and the viscosity property of the fluid causes some flow patterns in the pipes

Uniform Flow

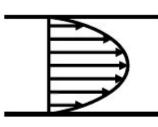
Laminar Flow

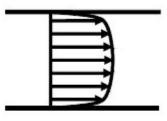
Turbulent Flow



Turbulent Flow

Reynolds Experiment





Reynolds Number

$$Re = \frac{\rho \vartheta d}{\mu} = \frac{\vartheta d}{\gamma}$$

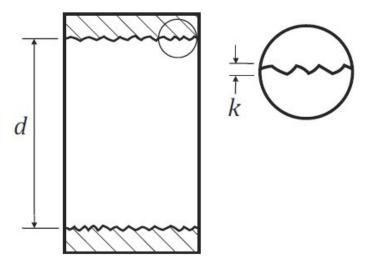
Where,

Re, Reynolds Number, Unitles:

- ρ , Density in kg/m^{3,}
- ϑ , Velocity in m/s,
- d, Diameter in m,
- $\mu~$, Absolute Viscosity in Pa s
- $\gamma\,$, Kinematic Viscosity in m²/s

Laminar Flow Turbulent Flow

Re < 2000</th>Laminar Flow2000< Re<4000</td>Both flow types possibleRe> 4000Turbulent Flow



Darcy-Weisbach Equation

$$hf = \frac{4fL}{d}\frac{v^2}{2g}$$

Where,

- hf, head loss due to friction in meters
- f, Friction Factor
- L, Length of pipe in meters
- d, Diameter in meters
- $\vartheta\,$, mean fluid velocity in m/s
- $g\,$, acceleration due to gravity in m/s²
- k , Surface Roughness

FLUID FUNCTIONS

Fluids must have some properties according to the system going to be used ,

-Correct Viscosity and High Viscosity Index,

-Suitable Chemical and Environmental properties, Non toxic,

-Should not react with the System Materials,

-Must Provide Lubrication,

- -Fire Resistance,
- -Foam Resistance,
- -Low Density,
- -Low Volatility,
- -Large Bulk Modulus,
- -Good Heat Transfer Capability,
- -Inexpensible,
- -Ease of supply,

FLUID SELECTION FOR APPLICATIONS

Applications	Suitable Fluids *	Max. Working Pressure	Working Temperature	Working Environment
Vehicles	1 • 2 • 3	250 bar	-40 to +60 °C	open & closed
Construction Machinery	1.2.3	315 bar	-40 to +60 °C	open & closed
Special Vehicles	1 • 2 • 3 • 4	250 bar	-40 to +60 °C	open & closed
Forestry Machines	1 • 2 • 3	250 bar	-40 to +50 °C	open & closed
Marine	1.2.3	315 bar	-60 to +60 °C	open & closed
Aerospace	1 • 2 • 5	210 (280) bar	-65 to +60 °C	open & closed
Material Handling, Conveyors	1 • 2 • 3 • 4	315 bar	-40 to +60 °C	open & closed
Machine Tools	1 • 2	200 bar	18 to 40 °C	open
Hydraulic Presses	1 • 2 • 3	630 bar	18 to 40 °C	generally open
Casting & Steel Production	1 • 2 • 4	315 bar	10 to 150 °C	open
Steel & Dam Applications	1 • 2 • 3	220 bar	-40 to +60 °C	open & closed
Power Plant	1 • 2 • 3 • 4	250 bar	-10 to +60 °C	generally open
Parforming Arts	1 • 2 • 3 • 4	160 bar	18 to 30 °C	generally open
Simulation and Testing Machines	1 • 2 • 3 • 4	1000 bar	18 to 150 °C	generally open
Mining	1 • 2 • 3 • 4	1000 bar	up to 60 °C	Closed & u.ground
Special Applications	2 • 3 • 4 • 5	250 (630) bar	-65 to 150 °C	open & closed

*) 1= Mineral Oil

2= Syntetic Oils 3= Enviromantal Friendly

4=Water, HFA, HFB

5=Special Oils

FLUID SELECTION FOR APPLICATIONS

_	Mineral yağ esaslı hidro- lik yağ	WEC	Yanmaz akışkanlar	WEC	Çevredostu akışkanlar	WEC	Özel akışkanlar	WEC	
	DIN 51524, 1. bölüm Hidrolik yağ HL	2	Berrak su	0	Temel akışkan		Sentetik yağ		
WEN	Mineral yağ esaslı ko- rozyona ve yaşlanmaya		HFA tipleri (95/5)		Bitkisel yağlar (HTG) (Trigliserit)	0-1	(ðrneğin Poli-α olefin ve glikol)		-
Suya zarar verme ka	karşı katkı maddeleri içeren hidrolik akışkan		HFA-E (emülsiyon)	3	Poli glikol (HPG)	0-1	Uçaklarda kullanılan		-
WEC Suya zarar verme sıı	DIN 51524, 2. bölüm Hidrolik yağ HLP		HFA-M (mikro-emülsiyon)	3	Sentetik ester (HE)	0-1	akışkan Hadde yağı ile uyumlu		
Açıklama	HL tipi hidrolik yağ ile		HFA-S (çözelti)	0-1			akışkanlar		Ve
	aynı özellikte, ancak ilave olarak sürtünme bölgele- rinde aşınmaya karşı aktif katkı maddeli		HFA-V (kalınlaştırılmış) % 80 H ₂ O + % 20 konsantre	~1			VS		-
	DIN 51524, 2. bôlüm Hidrolik yağ HLP-D		HFB (yağ emilsiyonu içeren su) % 40 H ₂ O + % 60 mineral yağ	3					
	HLP tipi hidrolik yağ ile aynı özellikte, ancak ilave olarak her biri aktif yayılma ve derterjan katkı		HFC (su glikol) % 40 H ₂ O + % 60 glikol	0-1					
	maddeli, HLP yağlardan farklı olarak hava ve suyu ayrıştırmak gerekmez.		HFD-R (fosfat ester)	1-(2)					
	DIN51524, 1. bölüm Hidrolik yağ HLP		HFD-U (diğer kombiasyonlar) (genelde	~1					
	HLP tipi yağ ile aynı özel- likte, ancak ilave olarak viskozite / sıcaklık karak- teristiğinin iyileştirilmesi için aktif katkı maddeli		poliester)						

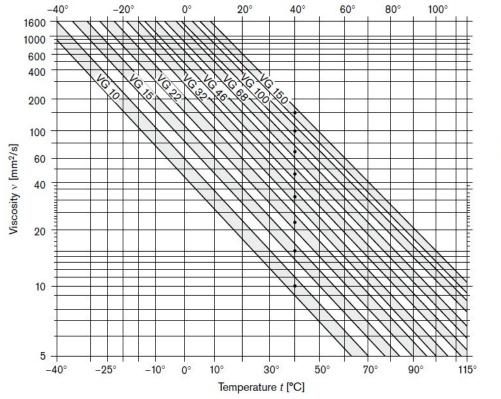
FLUID FUNCTIONS

Viscosity and High Viscosity Index,

If the viscosity of a hydraulic fluid used is above the permitted operating viscosity, this will result in increased hydraulic-mechanical losses. In return, there will be lower internal leakage losses.

If the pressure level is lower, lubrication gaps may not be filled up, which can lead to increased wear. For hydraulic pumps, the permitted suction pressure may not be reached, which may lead to cavitation damage.

If the viscosity of a hydraulic fluid is below the permitted operating viscosity, increased leakage, wear, susceptibility to contamination and a shorter component life cycle will result.





FLUID FUNCTIONS

Viscosity – Temperature Effect

Hydraulic Oil must provide lubrication film thickness in System Temperature limits

Service point

Hydraulic tank

-10

(14)

-20

(-4)

0

(32)

ISO VG 32

FLUID FUNCTIONS

Viscosity – Temperature Considerations

Kind of fluid

Hydraulic oil

Capacity

1 (U.S. gal)

180(47.6)

System: 270(71.3)

Tank:

Ambient temperature °C(°F) Capacity Kind of fluid Service point 30 40 1 (U.S. gal) -20 -10 0 10 20 (50) (68) (86) (104) (-4) (14) (32)SAE 30 Engine 14.2(3.8) oil pan SAE 10W Engine oil SAE 10W-30 Transmission 3.8(1.0) SAE 15W-40 case SAE 85W-140 Gear oil 5.0(1.3) NLGI NO.1 Ambient temperature °C(°F) 3) NLGI NO.2 30 40 10 20 2×2) SAE 85W-90 (50)(68)(86) (104) 5×4) ISO VG 32 .6) ISO VG 46 ISO VG 46 .3) 1SO VG 68 **ISO VG 68** ASTM D975 NO.1 .5) ASTM D975 NO.2 NLGI NO.1 Fitting Grease As required (Grease nipple) NLGI NO.2 Mixture of Radiator antifreeze Ethylene glycol base permanent type 35(9.2) and water (Reservoir tank) 50:50 NLGI : National Lubricating Grease Institute SAE : Society of Automotive Engineers ASTM : American Society of Testing and Material API : American Petroleum Institute ISO : International Organization for Standardization

Use only oils listed below or equivalent. Do not mix different brand oil.

FLUID FUNCTIONS

Viscosity – Temperature Effect

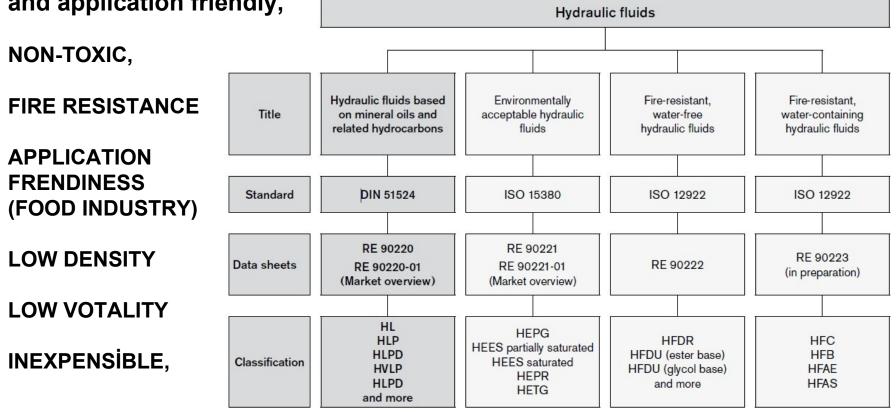
Technical data

(for applications outside these parameters, please consult us!)

general				
Weight			Individual connection	Central connection
	- Valve with one solenoid	kg [lbs]	3.6 [7.9]	3.5 [7.7]
	- Valve with two solenoids	kg [lbs]	4.4 [9.7]	4.3 [9.5]
Installation posit	tion		Any	
Ambient tempera	ature range	°C [۴]	PC [#] -30 +50 [-22 +122] (NBR seals) -20 +50 [-4 +122] (FKM seals)	
MTTF _d values ac	cording to EN ISO 13849	Years	150 (for further details see data	sheet 08012)

Maximum operating pressure	– Port A, B, P	bar [psi]	315 [4569]		
	– Port T	bar [psi]	160 [2320]		
			With symbols A and B, port T has to be used as leakage oil connection if the operating pressure exceeds the tank pressure.		
Maximum flow		l/min [US gpm]	120 [31.7]		
Flow cross-section	– Symbol V	mm ² [inch ²]	11 [0.017] (A/B to T); 10.3 [0.016] (P to A/B)		
(spool position 0)	– Symbol W	mm ² [inch ²]	2.5 [0.004] (A/B to T)		
	– Symbol Q	mm ² [inch ²]	5.5 [0.009] (A/B to T)		
Hydraulic fluid			See table below		
Hydraulic fluid temperature ran	ge	°C [۴]	-30 +80 [-22 +176] (NBR seals)		
(at the valve operating ports)			-20 +80 [-4 +176] (FKM seals)		
Viscosity range mm ² /s [SUS]] 2.8 500 [35 2320]		
Maximum admissible degree of contamination of the hydraulic fluid - cleanliness class according to ISO 4406 (c)			Class 20/18/15 1)		

RE 23340, edition. 2013-06, Beach Rewroth AG



FLUID FUNCTIONS

Selected fluids must be environmental and application friendly,

FLUID CONSIDERATIONS

Selected fluid must also be considered in application suitability,

Wear protection capability

Aging Resistance

Tested as described in DIN 51524-2,-3 via test procedures The w "FZG gear test rig" (ISO 14635-1) and "Mechanical test in the vane pump" (ISO 20763). to which it is subjected. But Not applicable ISO VG 32.

The way a hydraulic fluid ages depends on the thermal, chemical and mechanical stress ected.

	Reservoir temperature	Fluid life cycle
	80 °C	100 %
	90 °C	50 %
ith:	100 °C	25 %

Material compatibility

Classification	Incompatible with:
HLxx classifications	with EPDM seals
Zinc- and ash/free hydraulic fluids	with bronze-filled PTFE seals

PUMPS

A-POSITIVE DISPLACEMENT

(Hydrostatic)

- i- Gear
 - 1- External

2- Internal

3- External

ii- Screw

iii- Vane

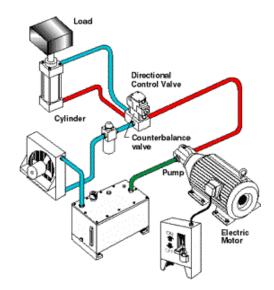
1- Balanced

2-Unbalanced

iv-Piston

1- Radial

2- Axial


-Bent Axis

-Swash Plate

B-Non-Positive Displacement

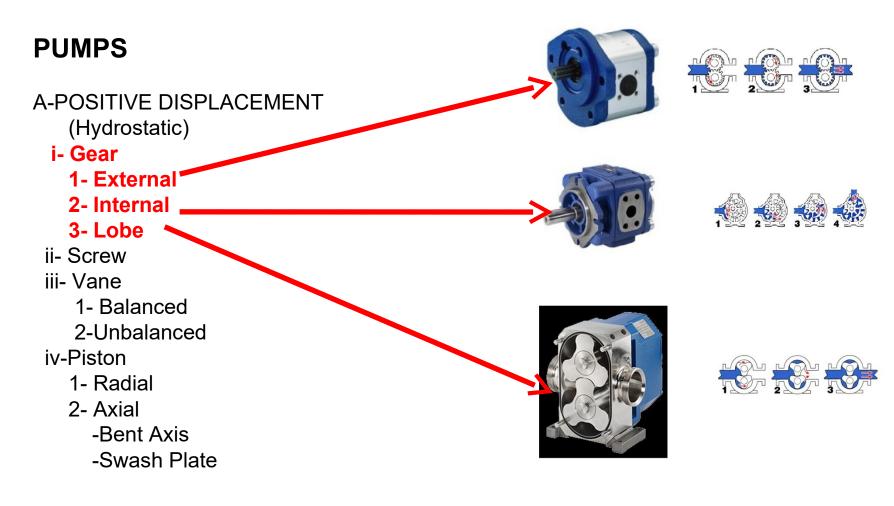
(Hydrodynamic)

- Centrfifugal (Impeller)
- Axial (Propeller)

PUMPS

PUMP GENERAL CHARACTERISTICS

Type Of	Pump		Pressure Capacity (bar)	Maximum Flow Rate (I/min)	Speed (rpm)	Viscosity (cS)	Approximate Efficiency	
External	Gear Pum	р	100-300	200	500-6000	40-80	% 80-90	
Internal C	Gear Pump	s	150-300	200	500-3000	40-80	% 80-90	
Lobe Gea	ar Pump		30-50	300				
Screw Pu	ımp		50-200	200	1000-3500 80-200		% 70-80	
Vane Pumps			100-200 300		500-3000	20-160	% 70-80	
			40-160	125	500-2000	20-160	% 70-80	
Piston Pumps	Radial		Up to 700	125	1000-3000	10-200	% 85-90	
	Axial	Bent Axis	Up to 400	200	500-3000	20-50	% 85-90	
		Swash Plate	150-400	200	1000-3000	30-50	% 85-90	

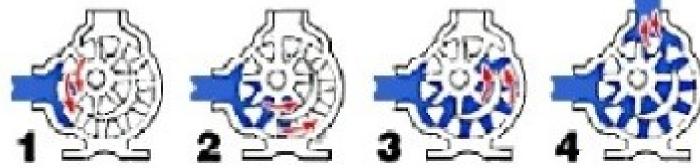

PUMP SELECTING CRITERIAS FOR APPLICATIONS

				Т	уре					
CRITERIA	DDP	lDP	OP	VP	TOPP	сорр	ЕŞЯРР	ESBRPP	EEPEPP	EDPEPP
Available Speed	1	2	2	2	з	3	2	2	2	2
Available Pressure	2	2	3	3	з	3	1	1	1	1
Viscosity	1	2	3	1	3	3	1	1	1	1
Noise Level	4	1	2	1	2	2	3	3	3	3
Product Life	3	2	2	1	1	1	2	2	2	2
Price	1	2	2	3	2	2	3	3	3	3
External Gear								=	DDP	
Internal Gear Pump	0							=	İDP	
Orbital Pump								=	OP	
Screw Pump								=	VP	
Unballanced Vane I	Pump	•						=	TOP	
Ballanced Vane Pu	mp							=	ÇOP	Р
Radial Piston Pump)							=	EŞRI	р
Radial Eccentric Pi	ston	Pum	р					=	ESBR	RPP
Bent Axis Piston Pu	Jmp							=	EEPE	PP
Bent Axis Disk Pis	ston I	ump						=	EDP	EPP

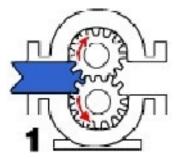


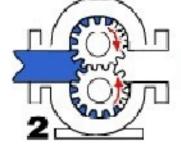
PUMPS

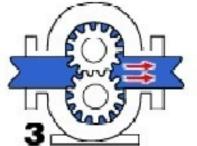
A-POSITIVE DISPLACEMENT (Hydrostatic) i- Gear 1- External 2- Internal 3- Lobe



A-POSITIVE DISPLACEMENT (Hydrostatic) i- Gear 1- External 2- Internal 3- Lobe



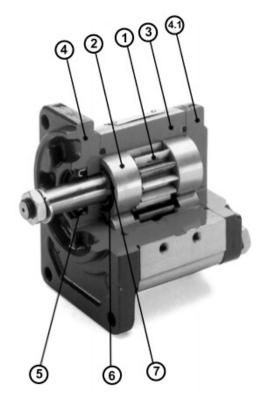




GEAR PUMPS (External Gear Pumps)

V = m * z * b * h * pi m= gear module z= tooth # b= tooth width h= tooth height

(1) Gears

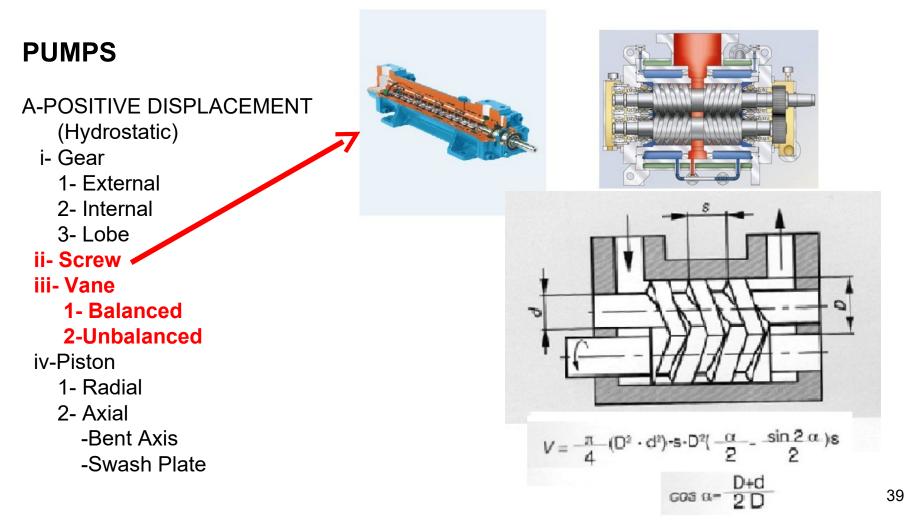

2 Bearings

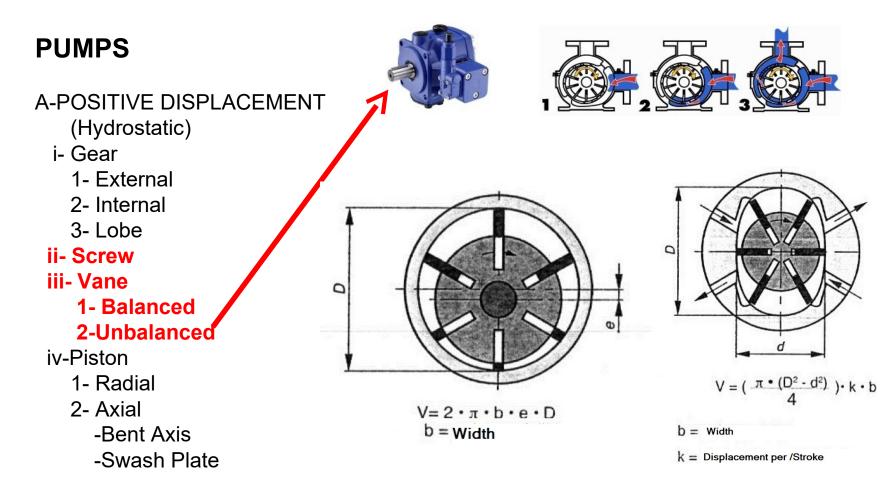
Covers
 Shaft seal

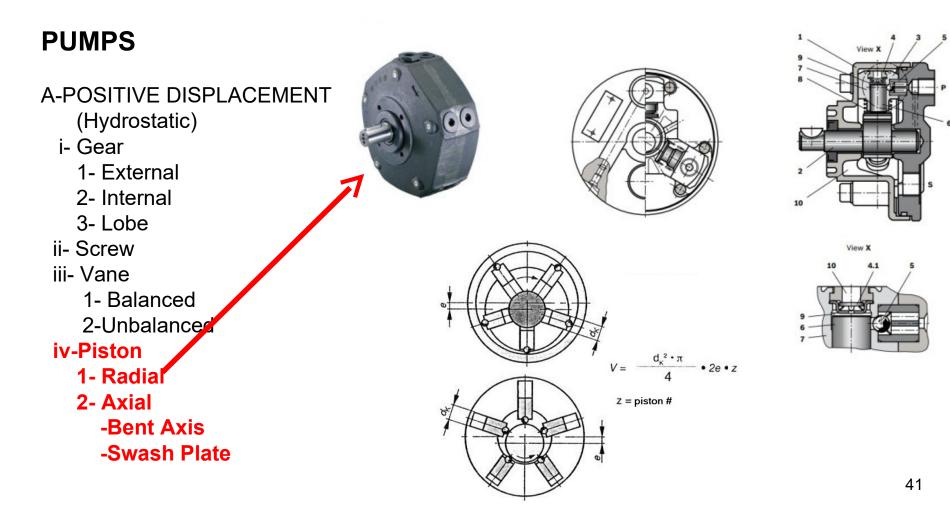
Plain-bearing

⑦ Thrust pressure seal
 ⑧ Center coupling

③ Extruded aluminium body




HYDRAULIC SVSTEM ENIIDMENTS



PUMPS

A-POSITIVE DISPLACEMENT (Hydrostatic)

i- Gear

1- External

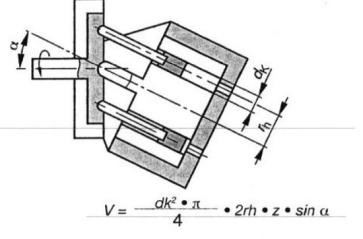
2- Internal

3- Lobe

ii- Screw

iii- Vane

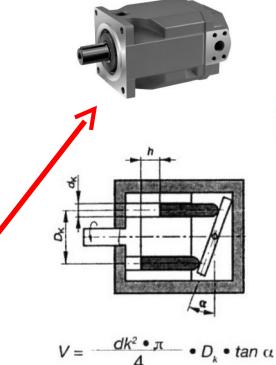
1- Balanced 2-Unbalanced

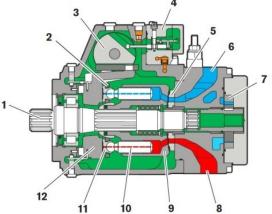

iv-Piston

1- Radial

2- Axial -Bent Axis

-Swash Plate





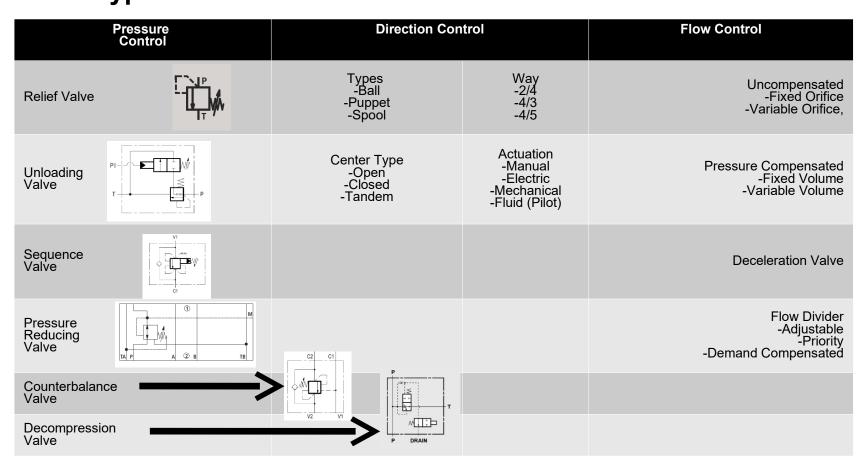
PUMPS

- **A-POSITIVE DISPLACEMENT** (Hydrostatic)
 - i- Gear
 - 1- External
 - 2- Internal
 - 3- Lobe
 - ii- Screw
 - iii- Vane
 - 1- Balanced 2-Unbalanced
 - iv-Piston
 - 1- Radial
 - 2- Axial
 - -Bent Axis
 - -Swash Plate

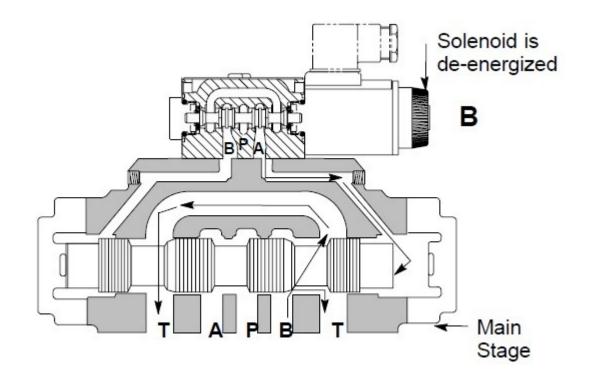
- Drive shaft 1
- 2 Retaining plate
- Stroke piston 3 4
 - Controller (using the EP as an example here)

- 10 Piston 11 Slipper pad
- 6 Low-pressure side
- 7 Auxiliary pump
- 8 High-pressure side
- 9 Cylinder
- 12 Swashplate

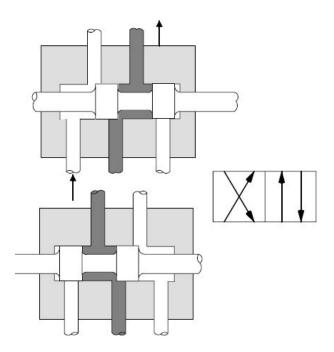
5 Control plate


VALVES

HYDRAULIC SYSTEM EQUIPMENTS_VALVES Valve Types

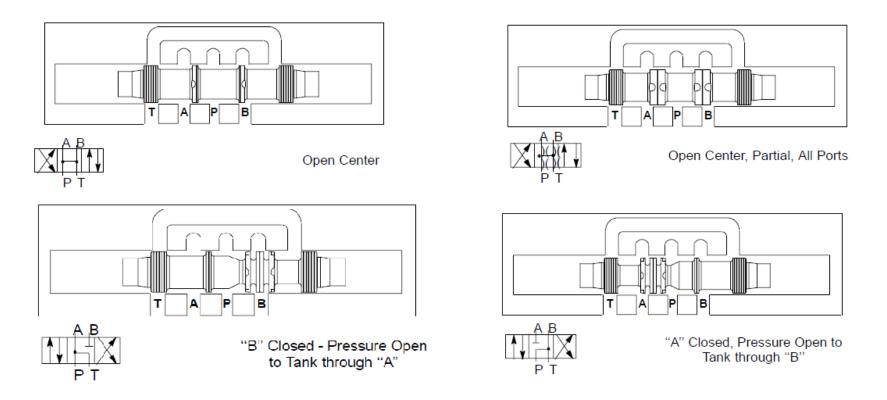


HYDRAULIC SYSTEM EQUIPMENTS_VALVES Directional Valve Types_ Pilot-Solenoid Operated



HYDRAULIC SYSTEM EQUIPMENTS_VALVES Directional Valve

Simple 4 / 2



HYDRAULIC SYSTEM EQUIPMENTS_VALVES Directional Valve Types_ Open Center

ACTUATORS

HYDRAULIC SYSTEM CIRCUIT ELEMENTS Actuators (Cylinders)

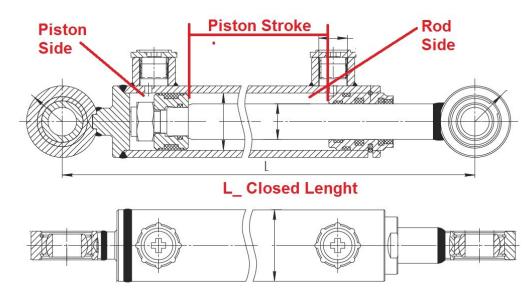
Actuators turns Hydraulic Power into Mechanical actuation,

Hydraulic Motors gives Rotational

HYDRAULIC SYSTEM CIRCUIT ELEMENTS Actuators (Cylinders) Hydraulic Symbols

CYLINDERS

Graphic symbol	Item	Description
	Single esting sulinder	Return stroke by external force
	Single-acting cylinder	Return stroke through a spring
	Double seting onlinder	Single rod
	Double-acting cylinder	Double rod
	Cylinder with fixed stroke end cushioning	Cushioning on one side
		Cushioning on both sides
	Cylinder with adjustable	Cushioning on one side
	stroke end cushioning	Cushioning on both sides
	Talaansia adiadaa	Single-acting
	Telescopic cylinder	Double-acting

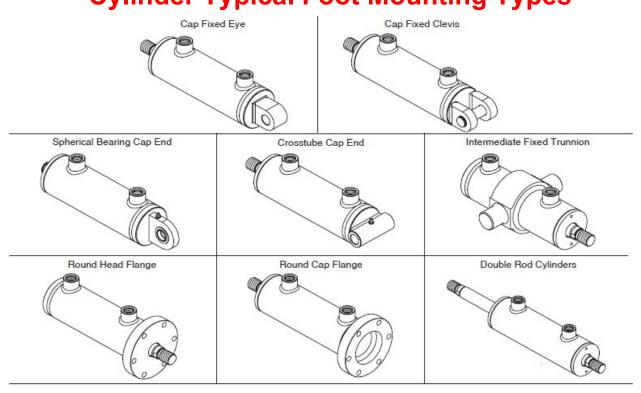


HYDRAULIC SYSTEM CIRCUIT ELEMENTS Actuators (Cylinders)

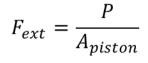
Cylinder Definitions

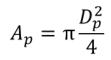
HYDRAULIC SYSTEM CIRCUIT ELEMENTS Actuators (Cylinders)

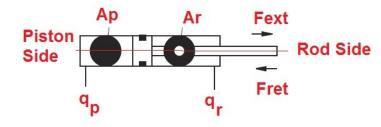
Cylinder Typical Mounting Examples


Assembly (symbolic representation)	Denomination / type	Assembly (symbolic representation)	Denomination / type
	Swivel head CGK ISO 12240-4		Swivel head CGKL ISO 12240-4
	Clevis bracket CLCC		Swivel head (clampable) CGKD ISO 8132
	Fork clevis CCKA		Trunnion bracket CLTB ISO 8132
	Eye bracket CLEA		Clevis bracket (clampable) CLCA
	Clevis bracket (clampable)		ISO 8132 form B
	CLCB ISO 8133 DIN 24556		Clevis bracket (clampable) CLCD ISO 8132
	Trunnion bracket CLTA		form A
	Swivel head (clampable) CGKA ISO 8133 DIN 24555		

HYDRAULIC SYSTEM CIRCUIT ELEMENTS Actuators (Cylinders) Cylinder Typical Foot Mounting Types



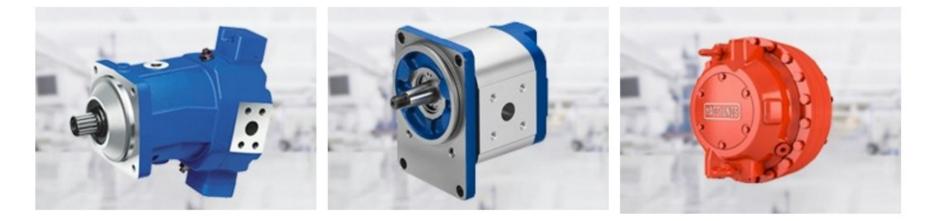



HYDRAULIC SYSTEM CIRCUIT ELEMENTS Actuators (Cylinders) Force Relations

$$F_{ret} = \frac{P}{A_r}$$

$$A_r=A_p-A_r=\pi\frac{(D_p^2-D_r^2)}{4}$$

Force Acts Along the Cylinder axis



HYDRAULIC SYSTEM Actuators

Hydraulic Motors (Like Pumps)

→ Axial Piston Motors

→ External Gear Motors

→ Radial Piston Motors

HYDRAULIC SYSTEM Actuators

Hydraulic Motors

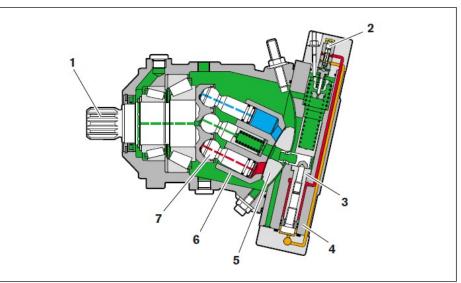
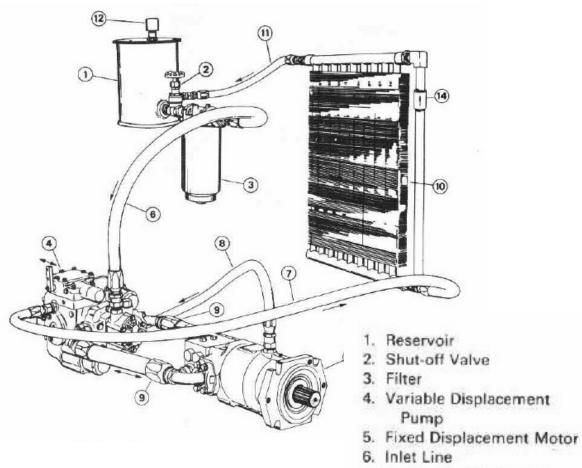


Fig. 2: Assembly of the A6VM

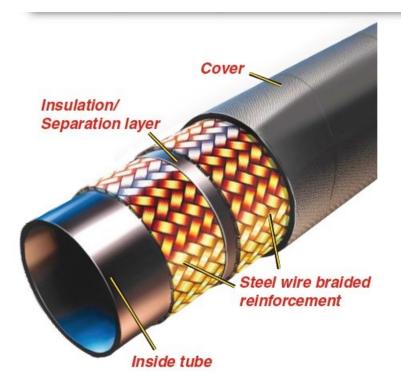
- 1 Drive shaft
- 2 Control piston
- 3 Stroke piston
- 4 Port plate
 - 5 Lens plate
 - 6 Cylinder


7 Piston

HYDRAULIC SYSTEM CIRCUITS

7. Pump Case Drain Line

- 8. Motor Case Drain Line
- 9. High Pressure Lines
- 10. Heat Exchanger
- 11. Reservoir Return Line
- 12. Reservoir Fill Cap or Breather
- 14. Heat Exchanger By-pass Valve

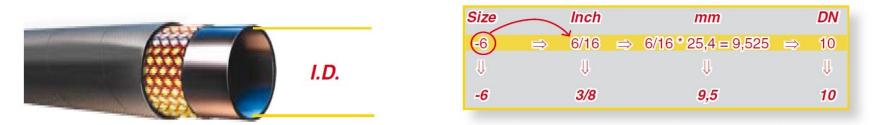


HOSES

Hose

Typically a rubber hose is constructed of an extruded inside synthetic rubber tube that has the sole purpose to keep the conveyed fluid in the hose. The elastomeric nature of rubber requires that a reinforcement layer be wound or braided around the tube in order to hold the internal pressure. The reinforcement layer(s) are either textile or steel (or both).

To protect these inner layers of the hose from the ambient conditions, an outer synthetic rubber cover is extruded around the reinforcement.



Hose Size

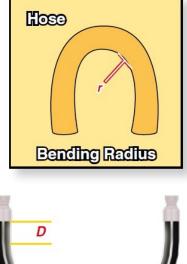
The power transmitted by means of a pressurised fluid varies with pressure and rate of flow.

The size of the components must be adequate to keep pressure drops to a minimum and avoid aging due to heat generation or excessive fluid velocity.

Parker uses the internationally recognised hose dash size as a measurement of the size of their hoses. This size is a measurement of the inside tube of the hose – not the wall outer diameter.

Hose Bending Radius

The minimum bend radius of a hose refers to the minimum radius that the hose may be bent through whilst operating at the maximum allowable published working pressure.

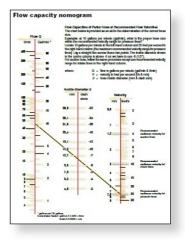

Bending radius is not a measurement or indicator of hose flexibility.


The catalogue specified values of bending radii are based on international or Parker specifications and have been proven through rigorous impulse testing of the hose assemblies.

Bending the hose below the minimum bending radius leads to loss of mechanical strength and hence possible hose failure.

A minimum straight length of 1,5 times the hose's outside diameter (D) shall be allowed between the hose fitting and the point at which the bend starts.

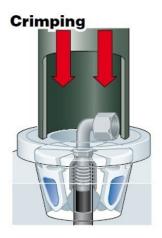
INCORRECT



The power transmitted by means of a pressurised fluid varies with pressure and rate of flow. The size of the components (hose and fittings) must be adequate to keep pressure drops to a minimum and avoid damage due to heat generation or excessive fluid velocity.

If the required size of hose is not already known, the **Hose Capacity Nomogram**, may assist.

The size of standard hoses is specified by the inside diameter of the tube.



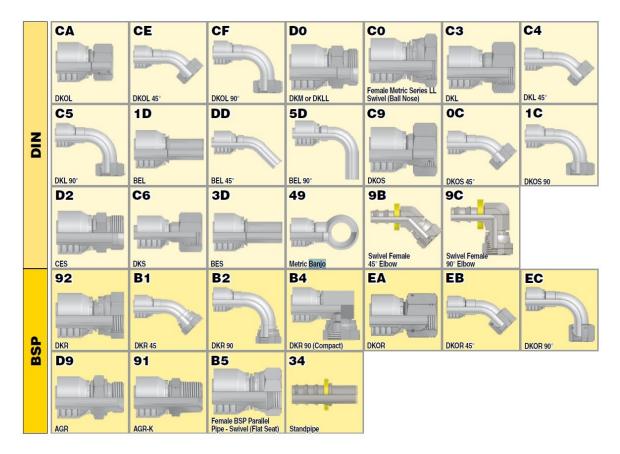


Angle setting

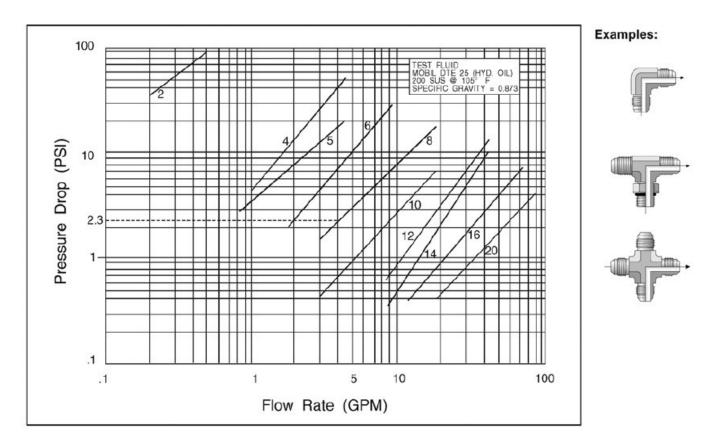
The displacement angle of a hose assembly is indicated only when two elbow fittings are assembled in a displaced way.

The angle always has to be indicated clockwise looking from the elbow fitting at the back to the one in the front. Please also consider the natural bending of the hose.

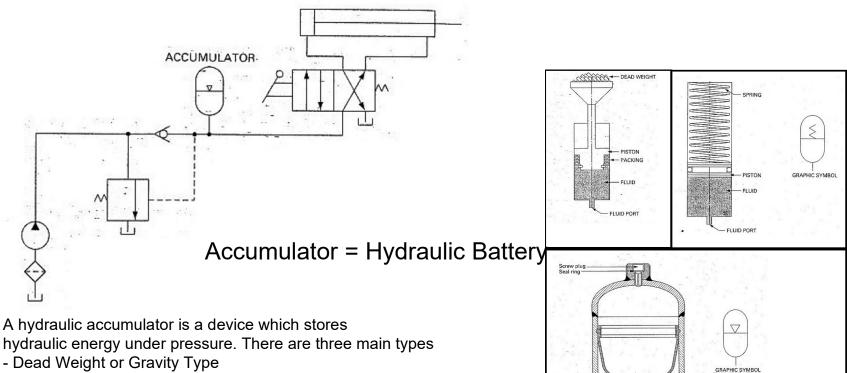
Cleaning



ISO 4406	NAS 1638	SAE 749	Cartridge
11/8	2		
12/9	3	0	
13/10	4	1	
14/11	5	2	
15/12	6	3	
16/13	7	4	Зµ
17/14	8	5	Зµ
18/15	9	6	Зµ
19/16	10		Зµ
20/17	11		
21/18	12		

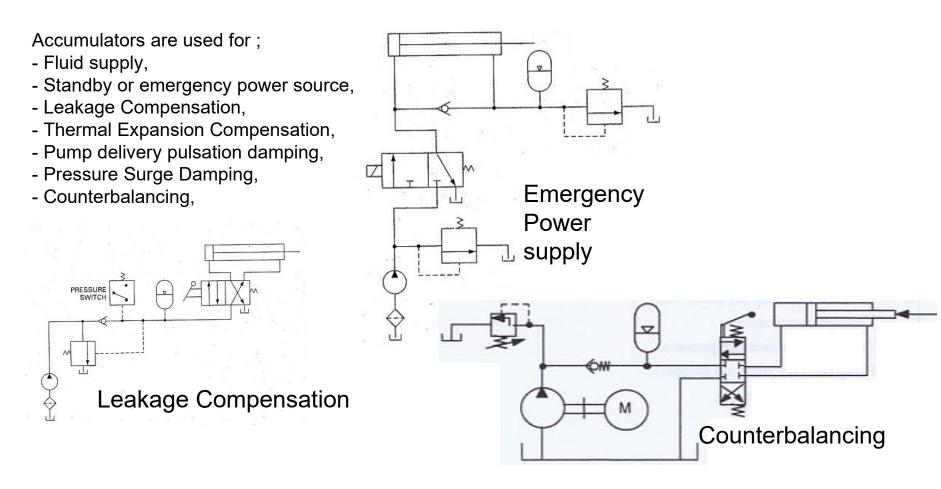


HYDRAULIC SYSTEM CIRCUIT ELEMENTS FITTINGS-Pressure Drop

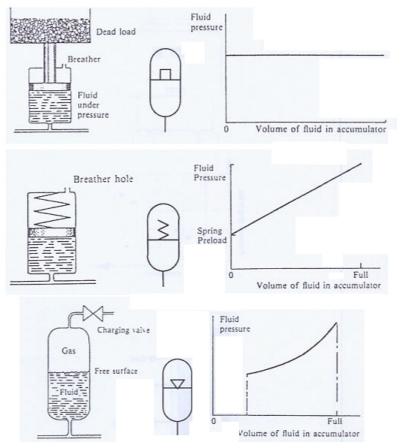

Accumulators

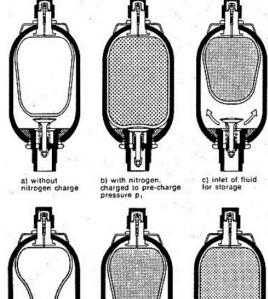
HYDRAULIC SYSTEM CIRCUIT ELEMENTS Accumulator-Basic Accumulator Circuit

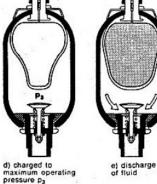
Steel shell Shut-off but


- Spring Loaded,
- Gas Loaded

HYDRAULIC SYSTEM CIRCUIT ELEMENTS Accumulator-Accumulator Usage Purpose

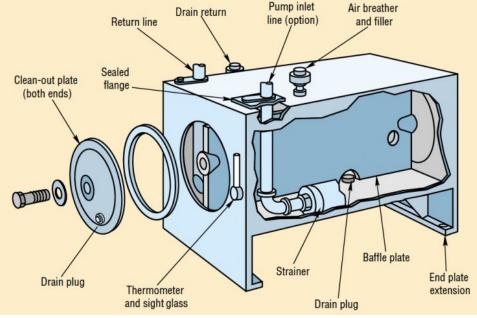






HYDRAULIC SYSTEM CIRCUIT ELEMENTS Accumulator- Accumulator Principle

Tank



HYDRAULIC SYSTEM CIRCUIT ELEMENTS Hydraulic Reservoir

Approximate Volume = Pump Flow Rate X N N= 1.5-2 for Mobile Application N=3 for Industrial Applications

Temperature

Also Consider, 1-Service Hole , 2-Breather , 3-Return line-Suction Line Distance, 4-Level Gauge and Sight glass, 5-Strainer and Suction Height, 6-Filter Location, 7-Mounting, 8-Sealing, 9-Foam Suction Prevention,

Filters

HYDRAULIC SYSTEM CIRCUIT ELEMENTS **Filtration**

Filtration Fact Filter media ratings expressed as a Beta Ratio indicate a media's particle removal efficiency.

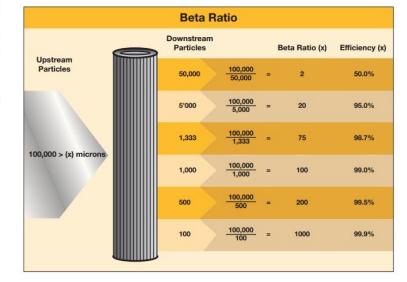
The Beta Ratio (also known as the filtration ratio) is a measure of the particle capture efficiency of a filter element. It is therefore a performance rating.

As an example of how a Beta Ratio is derived from a Multipass Test. Assume that 50,000 particles, 10 micrometres and larger, were counted upstream (before) of the test filter and 25 particles at that same size range were counted downstream (after) of the test filter. The corresponding Beta Ratio would equal 200, as seen in example 1.

The example would read "Beta ten equal to 200." Now, a Beta Ratio number alone means very little. It is a preliminary step to find a filter's particle capture efficiency. This efficiency, expressed as a percent, can be found by a simple equation. (Example 2)

Efficiency_x = $(1 - \frac{1}{\beta})$ 100 Efficiency₁₀ = $(1 - \frac{1}{200}) 100$ = 99.5%

of particles upstream $\beta_x = \frac{\# \text{ of particles downstream}}{\# \text{ of particles downstream}}$


"X" is at a specific particle size

25 = 200

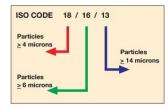
50,000

B10 (C) =

Beta Ratios / Efficiencies		
Beta Ratio (at a given particle size)	Capture Efficiency (at same particle size)	
1.01	1.0%	
1.1	9.0%	
1.5	33.3%	
2.0	50.0%	
5.0	80.0%	
10.0	90.0%	
20.0	95.0%	
75.0	98.7%	
100	99.0%	
200	99.5%	
1000	99.9%	

N particles downstream > x um N particles upstream > x µm

Bx(c) = N particles upstream > x µm / N particles downstream > x µm



HYDRAULIC SYSTEM CIRCUIT ELEMENTS Filtration

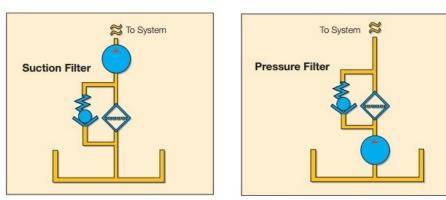
Number of particles per ml		
More than	Up to and including	
20 000	40 000	
10 000	20 000	
5 000	10 000	
2 500	5 000	
1 300	2 500	
640	1 300	
320	640	
160	320	
80	160	
40	80	
20	40	
10	20	
5	10	
2.5	5	
1.3	2.5	
0.64	1.3	
	More than 20 000 10 000 5 000 2 500 1 300 640 320 160 80 40 20 10 5 2.5 1.3	

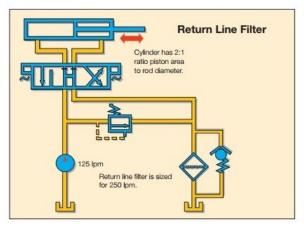
ISO Classification & Definition			
Range Micron number		Actual Particle Coun Range (per ml)	
18	4+	1,300 - 2,500	
16	6+	320 - 640	
13	14+	40 - 80	

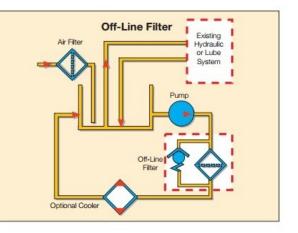
The ISO codes 4, 6, 14 microns replace the 2 digit 5, 15 microns and 3 digit 2, 5, 15 microns in use prior to the introduction of ISO MTD. Their use continues and the results remain comparable with the 4, 6, 14 micron ISO codes.

ISO code numbers	Type of system	Typical components	Sensitivity
23 / 21 / 17	Low pressure systems with large clearances	Ram pumps	Low
20 / 18 / 15	Typical cleanliness of new hydraulic oil straight from the manufacturer.	Flow control valves Cylinders	Average
	Low pressure heavy industrial systems or applications where long-life is not critical	,	
19 / 17 / 14	General machinery and mobile systems	Gear pumps/motors	Important
	Medium pressure, medium capacity		
18 / 16 / 13	World Wide Fuel Charter cleanliness standard for diesel fuel delivered from the filling station nozzle.	Valve and piston pumps/motors	Very important
	High quality reliable systems General machine requirements	Directional and pressure control valves	
17 / 15 / 12	Highly sophisticated systems and hydrostatic transmissions	Proportional valves	Critical
16 / 14 / 11	Performance servo and high Pressure long-life systems	Industrial servovalves	Critical
	e.g. Aircraft machine tools, etc.		
15 / 13 / 09	Silt sensitive control system with very high reliability	High performance servovalves	Super critical
	Laboratory or aerospace		

NOTE: The three figures of the ISO code numbers represent ISO level contamination grades for particles of >4 μ m(c), >6 μ m(c) and >14 μ m(c) respectively.






HYDRAULIC SYSTEM CIRCUIT ELEMENTS Filtration

Filter Types & Locations

- Air Filter
- Suction
- Pressure
- Return
- Off-line

